Xlsx
"Comprehensive spreadsheet creation, editing, and analysis with support for formulas, formatting, data analysis, and visualization. When Claude needs to work with spreadsheets (.xlsx, .xlsm, .csv, ...
"Comprehensive spreadsheet creation, editing, and analysis with support for formulas, formatting, data analysis, and visualization. When Claude needs to work with spreadsheets (.xlsx, .xlsm, .csv, ...
Real data. Real impact.
Most installed
Developers
Per week
Open source
Skills give you superpowers. Install in 30 seconds.
Unless otherwise stated by the user or existing template
A user may ask you to create, edit, or analyze the contents of an .xlsx file. You have different tools and workflows available for different tasks.
LibreOffice Required for Formula Recalculation: You can assume LibreOffice is installed for recalculating formula values using the
recalc.py script. The script automatically configures LibreOffice on first run
For data analysis, visualization, and basic operations, use pandas which provides powerful data manipulation capabilities:
import pandas as pd # Read Excel df = pd.read_excel('file.xlsx') # Default: first sheet all_sheets = pd.read_excel('file.xlsx', sheet_name=None) # All sheets as dict # Analyze df.head() # Preview data df.info() # Column info df.describe() # Statistics # Write Excel df.to_excel('output.xlsx', index=False)
Always use Excel formulas instead of calculating values in Python and hardcoding them. This ensures the spreadsheet remains dynamic and updateable.
# Bad: Calculating in Python and hardcoding result total = df['Sales'].sum() sheet['B10'] = total # Hardcodes 5000 # Bad: Computing growth rate in Python growth = (df.iloc[-1]['Revenue'] - df.iloc[0]['Revenue']) / df.iloc[0]['Revenue'] sheet['C5'] = growth # Hardcodes 0.15 # Bad: Python calculation for average avg = sum(values) / len(values) sheet['D20'] = avg # Hardcodes 42.5
# Good: Let Excel calculate the sum sheet['B10'] = '=SUM(B2:B9)' # Good: Growth rate as Excel formula sheet['C5'] = '=(C4-C2)/C2' # Good: Average using Excel function sheet['D20'] = '=AVERAGE(D2:D19)'
This applies to ALL calculations - totals, percentages, ratios, differences, etc. The spreadsheet should be able to recalculate when source data changes.
python recalc.py output.xlsx
status is errors_found, check error_summary for specific error types and locations#REF!: Invalid cell references#DIV/0!: Division by zero#VALUE!: Wrong data type in formula#NAME?: Unrecognized formula name# Using openpyxl for formulas and formatting from openpyxl import Workbook from openpyxl.styles import Font, PatternFill, Alignment wb = Workbook() sheet = wb.active # Add data sheet['A1'] = 'Hello' sheet['B1'] = 'World' sheet.append(['Row', 'of', 'data']) # Add formula sheet['B2'] = '=SUM(A1:A10)' # Formatting sheet['A1'].font = Font(bold=True, color='FF0000') sheet['A1'].fill = PatternFill('solid', start_color='FFFF00') sheet['A1'].alignment = Alignment(horizontal='center') # Column width sheet.column_dimensions['A'].width = 20 wb.save('output.xlsx')
# Using openpyxl to preserve formulas and formatting from openpyxl import load_workbook # Load existing file wb = load_workbook('existing.xlsx') sheet = wb.active # or wb['SheetName'] for specific sheet # Working with multiple sheets for sheet_name in wb.sheetnames: sheet = wb[sheet_name] print(f"Sheet: {sheet_name}") # Modify cells sheet['A1'] = 'New Value' sheet.insert_rows(2) # Insert row at position 2 sheet.delete_cols(3) # Delete column 3 # Add new sheet new_sheet = wb.create_sheet('NewSheet') new_sheet['A1'] = 'Data' wb.save('modified.xlsx')
Excel files created or modified by openpyxl contain formulas as strings but not calculated values. Use the provided
recalc.py script to recalculate formulas:
python recalc.py <excel_file> [timeout_seconds]
Example:
python recalc.py output.xlsx 30
The script:
Quick checks to ensure formulas work correctly:
pd.notna()/ in formulas (#DIV/0!)The script returns JSON with error details:
{ "status": "success", // or "errors_found" "total_errors": 0, // Total error count "total_formulas": 42, // Number of formulas in file "error_summary": { // Only present if errors found "#REF!": { "count": 2, "locations": ["Sheet1!B5", "Sheet1!C10"] } } }
data_only=True to read calculated values: load_workbook('file.xlsx', data_only=True)data_only=True and saved, formulas are replaced with values and permanently lostread_only=True for reading or write_only=True for writingpd.read_excel('file.xlsx', dtype={'id': str})pd.read_excel('file.xlsx', usecols=['A', 'C', 'E'])pd.read_excel('file.xlsx', parse_dates=['date_column'])IMPORTANT: When generating Python code for Excel operations:
For Excel files themselves:
[Real-world examples showing the skill in action]
MIT
No automatic installation available. Please visit the source repository for installation instructions.
View Installation InstructionsThe Claude Code Skills Marketplace
Discover and install production-ready AI capabilities in 60 seconds. Part of the Torly.ai family.
© 2026 Torly.ai. All rights reserved.